Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 435
Filtrar
1.
Curr Opin HIV AIDS ; 19(3): 124-132, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38502547

RESUMO

PURPOSE OF REVIEW: Despite suppressive antiretroviral therapy (ART), HIV-1 reservoirs persist and reignite viral replication if therapy is interrupted. Persistence of the viral reservoir in people with HIV-1 (PWH) is the main obstacle to an HIV-1 cure. The reservoirs are not transcriptionally silent, and viral transcripts can be detected in most ART-treated individuals. Here, we review the recent progress in the characterization of persistent HIV-1 transcription during ART. RECENT FINDINGS: Evidence from several studies indicates that, although cell-associated unspliced (US) HIV-1 RNA is abundantly expressed in ART-treated PWH, intact full-length US transcripts are rare and most US RNA is derived from defective proviruses. The transcription- and translation-competent defective proviruses, previously considered irrelevant, are increasingly being linked to residual HIV-1 pathogenesis under suppressive ART. Recent data suggest a continuous crosstalk between the residual HIV-1 activity under ART and the immune system. Persistent HIV-1 transcription on ART, despite being mostly derived from defective proviruses, predicts viral rebound upon therapy interruption, suggesting its role as an indicator of the strength of the host antiviral immune response that is shaping the viral rebound. SUMMARY: In light of the recent findings, the significance of persistent HIV-1 transcription during ART for the long-term health of PWH and the cure research should be reassessed.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Infecções por HIV/tratamento farmacológico , HIV-1/genética , Antirretrovirais/uso terapêutico , Replicação Viral , Provírus/genética , RNA Viral/genética , Linfócitos T CD4-Positivos , Carga Viral
2.
Virol J ; 20(1): 269, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978551

RESUMO

BACKGROUND: The capsid p24 (CA-p24) antigen is a component of the viral capsid of human immunodeficiency virus (HIV) that has been commonly used for clinical diagnosis and monitoring of HIV infections in Enzyme-linked Immunosorbent Assays (ELISAs). Commercial CA-p24 ELISAs are widely used in research settings, but these kits are costly and have limited breadth for detecting diverse HIV isolates. METHODS: Commercial CA-p24 antibodies were used as capture and detection antibodies. Specific CA-p24 ELISAs were established with these antibodies and tested for the detection of HIV-1 isolates with the aim of developing in-house protocols to recognize HIV-1 infections in vitro for research purposes. RESULTS: Here we present four protocols for in-house ELISAs to detect HIV CA-p24 using commercial antibodies. The assays were able to detect the CA-p24 antigen of different HIV-1 isolates tested. Comparison between the protocols showed that these in-house ELISAs exhibit high specificity, sensitivity, and reproducibility for CA-p24 quantitation but their reactivity varied per HIV-1 isolate and subtype. CONCLUSIONS: These optimized ELISA protocols represent valuable tools to investigate HIV-1 infections in research facilities at a lower price than commercial CA-p24 kits.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Capsídeo/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ensaio de Imunoadsorção Enzimática/métodos , Proteína do Núcleo p24 do HIV/análise , Proteínas do Capsídeo
3.
Biomaterials ; 303: 122399, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37992599

RESUMO

Precise delivery of genes to therapy-relevant cells is crucial for in vivo gene therapy. Receptor-targeting as prime strategy for this purpose is limited to cell types defined by a single cell-surface marker. Many target cells are characterized by combinations of more than one marker, such as the HIV reservoir cells. Here, we explored the tropism of adeno-associated viral vectors (AAV2) displaying designed ankyrin repeat proteins (DARPins) mono- and bispecific for CD4 and CD32a. Cryo-electron tomography revealed an unaltered capsid structure in the presence of DARPins. Surprisingly, bispecific AAVs transduced CD4/CD32a double-positive cells at much higher efficiencies than single-positive cells, even if present in low amounts in cell mixtures or human blood. This preference was confirmed when vector particles were systemically administered into mice. Cell trafficking studies revealed an increased cell entry rate for bispecific over monospecific AAVs. When equipped with an HIV genome-targeting CRISPR/Cas cassette, the vectors prevented HIV replication in T cell cultures. The data provide proof-of-concept for high-precision gene delivery through tandem-binding regions on AAV. Reminiscent of biological products following Boolean logic AND gating, the data suggest a new option for receptor-targeted vectors to improve the specificity and safety of in vivo gene therapy.


Assuntos
Proteínas de Repetição de Anquirina Projetadas , Infecções por HIV , Camundongos , Humanos , Animais , Transdução Genética , Dependovirus/genética , Vetores Genéticos/genética , Terapia Genética
4.
J Virol ; 97(12): e0133423, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37982648

RESUMO

IMPORTANCE: Although HIV replication can be effectively inhibited by antiretroviral therapy, this does not result in a cure as the available drugs do not inactivate the integrated HIV-1 DNA in infected cells. Consequently, HIV-infected individuals need lifelong therapy to prevent viral rebound. Several preclinical studies indicate that CRISPR-Cas gene-editing systems can be used to achieve permanent inactivation of the viral DNA. It was previously shown that this inactivation was due to small inactivating mutations at the targeted sites in the HIV genome and to excision or inversion of the viral DNA fragment between two target sites. We, here, demonstrate that CRISPR-Cas treatment also causes large unintended deletions, which can include surrounding chromosomal sequences. As the loss of chromosomal sequences may cause oncogenic transformation of the cell, such unintended large deletions form a potential safety risk in clinical application of this antiviral application and possibly all CRISPR-Cas gene-editing approaches.


Assuntos
Sistemas CRISPR-Cas , DNA Viral , Edição de Genes , Infecções por HIV , HIV-1 , Provírus , Deleção de Sequência , Humanos , Sistemas CRISPR-Cas/genética , DNA Viral/genética , Edição de Genes/métodos , Edição de Genes/normas , Infecções por HIV/genética , Infecções por HIV/terapia , Infecções por HIV/virologia , HIV-1/genética , Provírus/genética , Deleção Cromossômica , Segurança do Paciente
6.
Hum Gene Ther ; 34(17-18): 896-904, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37639360

RESUMO

The development of prophylatic or therapeutic medicines for infectious diseases is one of the priorities for health organizations worldwide. Innovative solutions are required to achieve effective, safe, and accessible treatments for most if not all infectious diseases, particularly those that are chronic in nature or that emerge unexpectedly over time. Genetic technologies offer versatile possibilities to design therapies against pathogens. Recent developments such as mRNA vaccines, CRISPR gene editing, and immunotherapies provide unprecedented hope to achieve significant results in the field of infectious diseases. This review will focus on advances in this domain, showcasing the cross-fertilization with other fields (e.g., oncology), and addressing some of the logistical and economic concerns important to consider when making these advances accessible to diverse populations around the world.


Assuntos
Doenças Transmissíveis , Humanos , Doenças Transmissíveis/genética , Doenças Transmissíveis/terapia , Terapia Genética , Vacinação , Clonagem Molecular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas
7.
Biomed Pharmacother ; 165: 115046, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37379644

RESUMO

BACKGROUND: The novel endonuclease Cas12b was engineered for targeted genome editing in mammalian cells and is a promising tool for certain applications because of its small size, high sequence specificity and ability to generate relatively large deletions. We previously reported inhibition of the human immunodeficiency virus (HIV) in cell culture infections upon attack of the integrated viral DNA genome by spCas9 and Cas12a. METHODS: We now tested the ability of the Cas12b endonuclease to suppress a spreading HIV infection in cell culture with anti-HIV gRNAs. Virus inhibition was tested in long-term HIV replication studies, which allowed us to test for viral escape and the potential for reaching a CURE of the infected T cells. FINDINGS: We demonstrate that Cas12b can achieve complete HIV inactivation with only a single gRNA, a result for which Cas9 required two gRNAs. When the Cas12b system is programmed with two antiviral gRNAs, the overall anti-HIV potency is improved and more grossly mutated HIV proviruses are generated as a result of multiple cut-repair actions. Such "hypermutated" HIV proviruses are more likely to be defective due to mutation of multiple essential parts of the HIV genome. We report that the mutational profiles of the Cas9, Cas12a and Cas12b endonucleases differ significantly, which may have an impact on the level of virus inactivation. These combined results make Cas12b the preferred editing system for HIV-inactivation. INTERPRETATION: These results provide in vitro "proof of concept' for CRISPR-Cas12b mediated HIV-1 inactivation.


Assuntos
Infecções por HIV , Provírus , Animais , Humanos , Provírus/genética , Provírus/metabolismo , Sistemas CRISPR-Cas/genética , Infecções por HIV/genética , Linfócitos T/metabolismo , DNA Viral/genética , Endonucleases/genética , Endonucleases/metabolismo , Técnicas de Cultura de Células , Mamíferos
8.
J Virol ; 97(5): e0036123, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37125907

RESUMO

Several recent studies indicate that mutations in the human immunodeficiency virus type 1 (HIV-1) 3'polypurine tract (3'PPT) motif can reduce sensitivity to the integrase inhibitor dolutegravir (DTG). Using an in vivo systematic evolution of ligands by exponential enrichment (SELEX) approach, we discovered that multiple different mutations in this viral RNA element can confer DTG resistance, suggesting that the inactivation of this critical reverse transcription element causes resistance. An analysis of the viral DNA products formed upon infection by these 3'PPT mutants revealed that they replicate without integration into the host cell genome, concomitant with an increased production of 1-LTR circles. As the replication of these virus variants is activated by the human T-lymphotropic virus 1 (HTLV-1) Tax protein, a factor that reverses epigenetic silencing of episomal HIV DNA, these data indicate that the 3'PPT-mutated viruses escape from the integrase inhibitor DTG by switching to an integration-independent replication mechanism. IMPORTANCE The integrase inhibitor DTG is a potent inhibitor of HIV replication and is currently recommended in drug regimens for people living with HIV. Whereas HIV normally escapes from antiviral drugs by the acquisition of specific mutations in the gene that encodes the targeted enzyme, mutational inactivation of the viral 3'PPT sequence, an RNA element that has a crucial role in the viral reverse transcription process, was found to allow HIV replication in the presence of DTG in cell culture experiments. While the integration of the viral DNA into the cellular genome is considered one of the hallmarks of retroviruses, including HIV, 3'PPT inactivation caused integration-independent replication, which can explain the reduced DTG sensitivity. Whether this exotic escape route can also contribute to viral escape in HIV-infected persons remains to be determined, but our results indicate that screening for 3'PPT mutations in patients that fail on DTG therapy should be considered.


Assuntos
Infecções por HIV , Inibidores de Integrase de HIV , HIV-1 , Humanos , HIV-1/fisiologia , Replicação Viral/genética , DNA Viral , Mutação , Inibidores de Integrase de HIV/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Piridonas/farmacologia , Infecções por HIV/tratamento farmacológico , Farmacorresistência Viral/genética
9.
J Biol Chem ; 299(6): 104743, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37100283

RESUMO

Fc receptors are involved in a variety of physiologically and disease-relevant responses. Among them, FcγRIIA (CD32a) is known for its activating functions in pathogen recognition and platelet biology, and, as potential marker of T lymphocytes latently infected with HIV-1. The latter has not been without controversy due to technical challenges complicated by T-B cell conjugates and trogocytosis as well as a lack of antibodies distinguishing between the closely related isoforms of FcγRII. To generate high-affinity binders specific for FcγRIIA, libraries of designed ankyrin repeat proteins (DARPins) were screened for binding to its extracellular domains by ribosomal display. Counterselection against FcγRIIB eliminated binders cross-reacting with both isoforms. The identified DARPins bound FcγRIIA with no detectable binding for FcγRIIB. Their affinities for FcγRIIA were in the low nanomolar range and could be enhanced by cleavage of the His-tag and dimerization. Interestingly, complex formation between DARPin and FcγRIIA followed a two-state reaction model, and discrimination from FcγRIIB was based on a single amino acid residue. In flow cytometry, DARPin F11 detected FcγRIIA+ cells even when they made up less than 1% of the cell population. Image stream analysis of primary human blood cells confirmed that F11 caused dim but reliable cell surface staining of a small subpopulation of T lymphocytes. When incubated with platelets, F11 inhibited their aggregation equally efficient as antibodies unable to discriminate between both FcγRII isoforms. The selected DARPins are unique novel tools for platelet aggregation studies as well as the role of FcγRIIA for the latent HIV-1 reservoir.


Assuntos
Proteínas de Repetição de Anquirina Projetadas , Agregação Plaquetária , Receptores de IgG , Humanos , Anticorpos/metabolismo , Plaquetas/metabolismo , Proteínas de Repetição de Anquirina Projetadas/metabolismo , HIV-1 , Isoformas de Proteínas/metabolismo , Receptores de IgG/metabolismo , Latência Viral , Linfócitos T/virologia
10.
Viruses ; 15(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36992394

RESUMO

The current SARS-CoV-2 pandemic forms a major global health burden. Although protective vaccines are available, concerns remain as new virus variants continue to appear. CRISPR-based gene-editing approaches offer an attractive therapeutic strategy as the CRISPR-RNA (crRNA) can be adjusted rapidly to accommodate a new viral genome sequence. This study aimed at using the RNA-targeting CRISPR-Cas13d system to attack highly conserved sequences in the viral RNA genome, thereby preparing for future zoonotic outbreaks of other coronaviruses. We designed 29 crRNAs targeting highly conserved sequences along the complete SARS-CoV-2 genome. Several crRNAs demonstrated efficient silencing of a reporter with the matching viral target sequence and efficient inhibition of a SARS-CoV-2 replicon. The crRNAs that suppress SARS-CoV-2 were also able to suppress SARS-CoV, thus demonstrating the breadth of this antiviral strategy. Strikingly, we observed that only crRNAs directed against the plus-genomic RNA demonstrated antiviral activity in the replicon assay, in contrast to those that bind the minus-genomic RNA, the replication intermediate. These results point to a major difference in the vulnerability and biology of the +RNA versus -RNA strands of the SARS-CoV-2 genome and provide important insights for the design of RNA-targeting antivirals.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Antivirais/farmacologia , Edição de Genes/métodos , RNA Viral/genética , RNA Viral/metabolismo
11.
Curr Opin Virol ; 59: 101301, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36805974

RESUMO

Despite decades of suppressive antiretroviral therapy, human immunodeficiency virus (HIV) reservoirs in infected individuals persist and fuel viral rebound once therapy is interrupted. The persistence of viral reservoirs is the main obstacle to achieving HIV eradication or a long-term remission. The last decade has seen a profound change in our understanding of the mechanisms behind HIV persistence, which appears to be much more complex than originally assumed. In addition to the persistence of transcriptionally silent proviruses in a stable latent reservoir that is invisible to the immune system, HIV is increasingly recognized to persist by resistance to the immune clearance, which appears to play a surprisingly prominent role in shaping the reservoir. In this review, we discuss some emerging insights into the mechanisms of HIV persistence, as well as their implications for the development of strategies towards an HIV cure.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Antirretrovirais/uso terapêutico , Provírus , Latência Viral , Linfócitos T CD4-Positivos , Replicação Viral , Carga Viral
12.
Cell Biosci ; 13(1): 28, 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774495

RESUMO

BACKGROUND: Activation of RNA-dependent stress kinase PKR, especially by viral double-stranded RNA, induces eukaryotic initiation factor 2 α-chain (eIF2α) phosphorylation, attenuating thereby translation. We report that this RNA-mediated negative control mechanism, considered a cornerstone of the cell's antiviral response, positively regulates splicing of a viral mRNA. RESULTS: Excision of the large human immunodeficiency virus (HIV) rev/tat intron depends strictly on activation of PKR by the viral RNA and on eIF2α phosphorylation. Rev/tat mRNA splicing was blocked by viral PKR antagonists Vaccinia E3L and Ebola VP35, as well as by a trans-dominant negative mutant of PKR, yet enhanced by overexpressing PKR. Expression of non-phosphorylatable mutant eIF2αS51A, but not of wild type eIF2α, abrogated efficient splicing of rev/tat mRNA. By contrast, expression of eIF2αS51D, a phosphomimetic mutant of eIF2α, left rev/tat mRNA splicing intact. Unlike eIF2αS51A, eIF2αS51D does not inhibit eIF2α phosphorylation by activated PKR. All HIV mRNA species contain terminal trans-activation response (TAR) stem-loop sequences that potentially could activate PKR, yet even upon TAR deletion, HIV mRNA production remained sensitive to inhibitors of PKR activation. Bioinformatic and mutational analyses revealed a compact RNA pseudoknot upstream of 3'-terminal TAR that promotes splicing by activating PKR. Supporting its essential role in control of splicing, this pseudoknot is conserved among diverse HIV and nonhuman primate SIVcpz isolates. The pseudoknot and 3'-terminal TAR collaborate in mediating PKR-regulated splicing of rev/tat intron, the pseudoknot being dominant. CONCLUSIONS: Our results on HIV provide the first example of a virus co-opting activation of PKR by its RNA, a cellular antiviral mechanism, to promote splicing. They raise the question whether other viruses may use local activation of host kinase PKR through RNA elements within their genome to achieve efficient splicing of their mRNA. Our experiments reveal an indispensable role for eIF2α phosphorylation in HIV rev/tat mRNA splicing that accounts for the need for PKR activation.

13.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675077

RESUMO

Human immunodeficiency virus (HIV) infections and HIV-induced acquired immunodeficiency syndrome (AIDS) continue to represent a global health burden. There is currently no effective vaccine, nor any cure, for HIV infections; existing antiretroviral therapy can suppress viral replication, but only as long as antiviral drugs are taken. HIV infects cells of the host immune system, and it can establish a long-lived viral reservoir, which can be targeted and edited through gene therapy. Gene editing platforms based on the clustered regularly interspaced palindromic repeat-Cas system (CRISPR-Cas) have been recognized as promising tools in the development of gene therapies for HIV infections. In this review, we evaluate the current landscape of CRISPR-Cas-based therapies against HIV, with an emphasis on the infection biology of the virus as well as the activity of host restriction factors. We discuss the potential of a combined CRISPR-Cas approach that targets host and viral genes to activate antiviral host factors and inhibit viral replication simultaneously. Lastly, we focus on the challenges and potential solutions of CRISPR-Cas gene editing approaches in achieving an HIV cure.


Assuntos
Síndrome de Imunodeficiência Adquirida , Infecções por HIV , Vírus , Humanos , Síndrome de Imunodeficiência Adquirida/genética , Síndrome de Imunodeficiência Adquirida/terapia , Sistemas CRISPR-Cas/genética , Infecções por HIV/genética , Infecções por HIV/terapia , Edição de Genes , Antivirais
14.
Virus Evol ; 8(2): veac072, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36533144

RESUMO

There is a strong evolutionary tendency of the human immunodeficiency virus (HIV) to accumulate A nucleotides in its RNA genome, resulting in a mere 40 per cent A count. This A bias is especially dominant for the so-called silent codon positions where any nucleotide can be present without changing the encoded protein. However, particular silent codon positions in HIV RNA refrain from becoming A, which became apparent upon genome analysis of many virus isolates. We analyzed these 'noA' genome positions to reveal the underlying reason for their inability to facilitate the A nucleotide. We propose that local RNA structure requirements can explain the absence of A at these sites. Thus, noA sites may be prominently involved in the correct folding of the viral RNA. Turning things around, the presence of multiple clustered noA sites may reveal the presence of important sequence and/or structural elements in the HIV RNA genome.

15.
Curr Opin HIV AIDS ; 17(5): 301-307, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35938464

RESUMO

PURPOSE OF REVIEW: To summarize the current status and highlight recent findings on predictive biomarkers for posttreatment HIV control (PTC) and virological remission. While historically, many studies focused on virological markers, there is an increasing tendency to enter immune and metabolic factors into the equation. RECENT FINDINGS: On the virological side, several groups reported that cell-associated HIV RNA could predict time to viral rebound. Recent data hints at the possible importance of the genic location and chromatin context of the integrated provirus, although these factors still need to be assessed in relation to PTC and virological remission. Evidence from immunological studies highlighted innate and humoral immunity as important factors for prolonged HIV remission. Interestingly, novel metabolic markers have emerged, which offer additional angles to our understanding of latency and viral rebound. SUMMARY: Facilitating PTC and virological remission remain top priorities for the HIV cure research. We advocate for clear and precise definitions for both phenomena in order to avoid misconceptions and to strengthen the conclusions that can be drawn. As no one-size-fits-all marker has emerged yet, more biomarkers are on the horizon, and viral rebound is a complex and heterogeneous process, it is likely that a combination of various biomarkers in cohesion will be necessary for a more accurate prediction of antiretroviral therapy-free HIV remission.


Assuntos
Infecções por HIV , Antirretrovirais/uso terapêutico , Biomarcadores , Humanos , Provírus , Carga Viral
16.
Virus Evol ; 8(1): veac022, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402002

RESUMO

Set-point viral load (SPVL), a common measure of human immunodeficiency virus (HIV)-1 virulence, is partially determined by viral genotype. Epidemiological evidence suggests that this viral property has been under stabilising selection, with a typical optimum for the virus between 104 and 105 copies of viral RNA per ml. Here we aimed to detect transmission fitness differences between viruses from individuals with different SPVLs directly from phylogenetic trees inferred from whole-genome sequences. We used the local branching index (LBI) as a proxy for transmission fitness. We found that LBI is more sensitive to differences in infectiousness than to differences in the duration of the infectious state. By analysing subtype-B samples from the Bridging the Evolution and Epidemiology of HIV in Europe project, we inferred a significant positive relationship between SPVL and LBI up to approximately 105 copies/ml, with some evidence for a peak around this value of SPVL. This is evidence of selection against low values of SPVL in HIV-1 subtype-B strains, likely related to lower infectiousness, and perhaps a peak in the transmission fitness in the expected range of SPVL. The less prominent signatures of selection against higher SPVL could be explained by an inherent limit of the method or the deployment of antiretroviral therapy.

17.
EBioMedicine ; 79: 103985, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35429693

RESUMO

BACKGROUND: The multiplicity, heterogeneity, and dynamic nature of human immunodeficiency virus type-1 (HIV-1) latency mechanisms are reflected in the current lack of functional cure for HIV-1. Accordingly, all classes of latency-reversing agents (LRAs) have been reported to present variable ex vivo potencies. Here, we investigated the molecular mechanisms underlying the potency variability of one LRA: the DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-AzadC). METHODS: We employed epigenetic interrogation methods (electrophoretic mobility shift assays, chromatin immunoprecipitation, Infinium array) in complementary HIV-1 infection models (latently-infected T-cell line models, primary CD4+ T-cell models and ex vivo cultures of PBMCs from HIV+ individuals). Extracellular staining of cell surface receptors and intracellular metabolic activity were measured in drug-treated cells. HIV-1 expression in reactivation studies was explored by combining the measures of capsid p24Gag protein, green fluorescence protein signal, intracellular and extracellular viral RNA and viral DNA. FINDINGS: We uncovered specific demethylation CpG signatures induced by 5-AzadC in the HIV-1 promoter. By analyzing the binding modalities to these CpG, we revealed the recruitment of the epigenetic integrator Ubiquitin-like with PHD and RING finger domain 1 (UHRF1) to the HIV-1 promoter. We showed that UHRF1 redundantly binds to the HIV-1 promoter with different binding modalities where DNA methylation was either non-essential, essential or enhancing UHRF1 binding. We further demonstrated the role of UHRF1 in the epigenetic repression of the latent viral promoter by a concerted control of DNA and histone methylations. INTERPRETATION: A better understanding of the molecular mechanisms of HIV-1 latency allows for the development of innovative antiviral strategies. As a proof-of-concept, we showed that pharmacological inhibition of UHRF1 in ex vivo HIV+ patient cell cultures resulted in potent viral reactivation from latency. Together, we identify UHRF1 as a novel actor in HIV-1 epigenetic silencing and highlight that it constitutes a new molecular target for HIV-1 cure strategies. FUNDING: Funding was provided by the Belgian National Fund for Scientific Research (F.R.S.-FNRS, Belgium), the « Fondation Roi Baudouin ¼, the NEAT (European AIDS Treatment Network) program, the Internationale Brachet Stiftung, ViiV Healthcare, the Télévie, the Walloon Region (« Fonds de Maturation ¼), « Les Amis des Instituts Pasteur à Bruxelles, asbl ¼, the University of Brussels (Action de Recherche Concertée ULB grant), the Marie Skodowska Curie COFUND action, the European Union's Horizon 2020 research and innovation program under grant agreement No 691119-EU4HIVCURE-H2020-MSCA-RISE-2015, the French Agency for Research on AIDS and Viral Hepatitis (ANRS), the Sidaction and the "Alsace contre le Cancer" Foundation. This work is supported by 1UM1AI164562-01, co-funded by National Heart, Lung and Blood Institute, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Neurological Disorders and Stroke, National Institute on Drug Abuse and the National Institute of Allergy and Infectious Diseases.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT , Repressão Epigenética , Infecções por HIV , HIV-1 , Ubiquitina-Proteína Ligases , Latência Viral , Síndrome de Imunodeficiência Adquirida , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Metilação de DNA , Decitabina/metabolismo , Infecções por HIV/genética , HIV-1/fisiologia , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Latência Viral/genética
18.
J Virol ; 96(7): e0009022, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35293771

RESUMO

The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreads rapidly and harbors many mutations in the spike protein, but the origin of this virus variant remains unclear. We address the role of unusual virus evolution mechanisms such as hypermutation, out-of-frame reading, and recombination. Rather, regular Darwinian evolution, that is, the repeated selection of beneficial spike mutations, seems to have led to the appearance of the grossly altered spike protein of the Omicron variant.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/virologia , Evolução Molecular , Humanos , Mutação , SARS-CoV-2/classificação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
19.
Mol Ther Methods Clin Dev ; 25: 43-51, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35356755

RESUMO

CRISPR-Cas12a is an alternative class 2 gene editing tool that may cause less off-target effects than the original Cas9 system. We have previously demonstrated that Cas12a attack with a single CRISPR RNA (crRNA) can neutralize all infectious HIV in an infected T cell line in cell culture. However, we demonstrated that HIV escapes from most crRNAs by acquisition of a mutation in the crRNA target sequence, thus providing resistance against Cas12a attack. Here, we tested the antiviral activity of seven dual crRNA combinations and analyzed the HIV proviral genomes for mutations at the target sites. We demonstrated that dual crRNA combinations exhibit more robust antiviral activity than a single crRNA attack and, more important, that the dual-crRNA therapy can prevent virus escape in long-term cultures. We confirmed the absence of any replication-competent virus in these apparently cured cultures. Surprisingly, we did not detect excision of the HIV sequences located between two Cas12a cleavage sites. Instead, we observed almost exclusively HIV inactivation by "hypermutation," that is, the introduction of indel mutations at both target sites due to the error-prone cellular DNA repair machinery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...